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Abstract

The needs of small-scale climate information have become prevalent to study the im-
pacts of future climate change as well as for paleoclimate researches where the re-
constructions from proxies are obviously local. In this study we develop a non-linear
statistical downscaling method to generate local temperatures and precipitation values
from large-scale variables (e.g. Global Circulation Model — GCM — outputs), through
Generalized Additive Models (GAMs) calibrated on the present Western Europe cli-
mate. First, various monthly GAMs (i.e. one model for each month) are tested for
preliminary analysis. Then, annual GAMs (i.e. one model for the 12 months altogether)
are developed and tailored for two sets of predictors (geographical and physical) to
downscale local temperatures and precipitation.

As an evaluation of our approach under large-scale conditions different from present
Western Europe, projections are realized (1) for present North America and Northern
Europe and compared to local observations (spatial test); and (2) for the Last Glacial
Maximum (LGM) period, and compared to local reconstructions and GCMs outputs
(temporal test).

In general, both spatial and temporal evaluations indicate that the GAMs are flexible
and efficient tools to capture and downscale non-linearities between large- and local-
scale variables. More precisely, the results emphasize that, while physical predictors
alone are not capable of downscaling realistic values when applied to climate strongly
different from the one used for calibration, the inclusion of geographical-type variables
— such as altitude, advective continentality and W-slope — into GAM predictors brings
robustness and improvement to the method and its local projections.

1 Introduction

Understanding the present climate and its changes is a difficult challenge. One basis
of such a research lies on studies of the long past climate history. To perform such a
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task at a global scale, useful devices are the well-known General Circulation Models
(GCM), complex computer codes simulating the atmospheric circulation through re-
solving the equations of the world atmospheric dynamics, often coupled with oceanic
models to take into account the interactions between the oceans and the atmosphere.
Although these numerical tools are required to get a global understanding of the land-
ocean-atmosphere system, they are computationally intensive and, then, can only pro-
duce relatively low spatial resolution simulations. Consequently, they do not capture
small-scale physical processes which drive some important local surface variables and
their high-resolution properties, such as precipitation (occurrence and intensity) and
its strong spatial variability (e.g. Wood et al., 2004). This is particularly true for paleo
studies, often requiring very low resolution GCMs to be able to simulate climate over
thousands of years (e.g. Rahmstorf and Ganopolski, 1999). Due to these low resolu-
tions, model outputs are difficult to compare to local present observations (e.g. Vrac
et al., 2007a) and even more to extreme climate events (e.g. Vrac and Naveau, 2007)
or local climate reconstructions from proxies (e.g. Kageyama et al., 2006). However,
these comparisons are essential to assess regional impacts of future climate change
needed at regional scales, or to understand physical, chemical or biological mecha-
nisms at lower scales in many present, near-present (past or future) and (long term)
paleo-climate studies.

In order to overcome these scale issues, it is necessary to develop downscaling
methods to generate realistic local time series from large-scale model outputs. Re-
gional Climate Models (RCMs) are a first approach. They can be understood as re-
gional GCMs, i.e., models solving the equations of the smaller scale (5 to 50km)
atmosphere dynamics for given regions (e.g. Liang et al., 2006). However, because
these models are equally (if not more) computationally intensive than GCMs in gener-
ating local or regional variables, an other approach has recently received an outburst
of interest: the statistical downscaling methods (SDMs).

As indicated by their name, these methods rely on modeling statistical relationships
between local-scale data (e.g. observations, reconstructions) and large-scale upper-air
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atmospheric variables (e.g. reanalysis data, GCM outputs). Different statistical models
have been developed in this goal, usually classified into three (sometimes overlapping)
families of methods: transfer functions (e.g. Zorita and von Storch, 1998; Sell et al.,
2000; Huth, 2002), weather typing (e.g. Bardossy et al., 1994; Huth, 2001; Vrac et al.,
2007a) and weather generators (e.g. Wilks, 1999; Wilks and Wilby, 1999). In contrast
to RCMs, because of their (generally) weak computational requirements, the SDMs
are fast in simulating local climate variables and they allow modeling the associated
uncertainties more easily than with RCMs (e.g. Katz, 2002). However, in context of
changing large-scale climate conditions, SDMs can have troubles to generate evolving
local climate variables. Indeed, by construction, many SDMs assume that the modeled
connections (large vs. local scales) are linear and remain the same in different climate
(e.g. Wilby et al., 1998; Vrac et al., 2007b ). This can lead to unrealistic future or
past statistical relationships and then to unrealistic projections of local variables. This
difficulty is emphasized in a framework of long past studies, as in paleoclimate down-
scaling. Hence, it is necessary to develop nonlinear and robust models under strong
climate change.

The statistical model that we propose in this article aims at responding to these
needs with the downscaling of precipitation and temperatures for the Last Glacial Max-
imum (LGM) period. First, it brings the necessary flexibility to represent the large-
vs. local-scale relationships with strong nonlinearities when needed. Second, it incor-
porates physical as well as geographical variables to gain robustness in the downscal-
ing projections under changed climate conditions.

The rest of this article is organized as follows. In Sect. 2, the large and regional-scale
data used are presented. Then the proposed statistical model is developed and an
application is performed and presented in Sect. 3. Conclusions and a short discussion
are provided in the last Sect. 4.

1Vrac, M., Stein, M., Hayhoe, K., and Liang, X. L.: A general method for validating statistical
downscaling methods under future climate change, Geophys. Res. Lett., submitted, 2007b.
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2 The large- and local-scale data and the statistical method

To calibrate any SDM, two types of data are required: large-scale and local- or regional-
scale data. The small scale data must be at the desired resolution for local projections
and the large-scale data at the same resolution as the data used to drive the projec-
tions. In this article, the region of study corresponds to Western Europe. Hence, each
type of data covers approximately the geographical rectangle [10° E; 20° W] x [37°N;
55° N]. This region has been choosen because it contains various physical and ge-
ographical contrasted conditions. Oceanic influences (e.g. Atlantic, North Sea), high
mountains near the center (Alps, Pyrenees), Mediterranean conditions, and continental
climate (eastern countries) imply a large range of local temperatures and precipitation
values and large-scale variables. This large range is a necessary condition to efficiently
calibrate our method for a present climate and applying it under evolving conditions.

2.1 Large-scale data: the climber model

The large-scale data used in this work are outputs from the CLIMBER model
(Petoukhov et al., 2000) that has a large spatial resolution of 10° in latitude and 51°
in longitude. It is an intermediate complexity model, in comparison to 3-D general cir-
culation models, it includes less explicit representations of atmospheric features, thus
relying on more parameterizations. In particular, it doesn’t compute explicitly the atmo-
sphere dynamics at the synoptic scales but accounts for their effects on the meridional
heat transport. Thus, it ignores the variability at the daily time scale of meteorological
events (e.g. winds associated with low pressure systems) and also at the time scale of
a few years, in particular the North Atlantic Oscillation.

The CLIMBER model has been conceived to allow for very long (103 to 10° years)
or a large number of integrations. Thus, it is a suitable tool for the paleoclimate com-
munity or for long future time projections. Despite its simplicity, CLIMBER was favor-
ably compared to results from more complex models, both in a paleoclimate framework
(Kageyama et al., 2001) as well as in an upcoming global warming context (Pethoukhov
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et al., 2005). Nevertheless, it is crucial to keep in mind that CLIMBER simulates the
atmosphere, the ocean and the vegetation. Then, the obtained results largely depend
on other components of the climate system, notably on the ice sheets and the car-
bon cycle, that are prescribed in the model. However, the understanding of the past
evolution of atmospheric CO, is still fragmentary, future projections are then not much
constrained yet. It is, overall, in these boundary conditions imposed to CLIMBER that
the largest uncertainties on the future climate evolution are located.

2.2 Regional-scale data: the CRU climatology

The regional-scale temperature and precipitation data used for calibration and valida-
tion of our statistical model, come from the “Climate Research Unit” database (CRU,
New et al., 2000). These regularly gridded data were chosen because of their global
land covering at the high spatial resolution of 10’ (i.e. 1/6 degree) and because of their
monthly temporal resolution that is consistent with the CLIMBER temporal resolution.

The CRU database corresponds to a monthly present climatology. That means that
for each grid-point and each available variable (here, temperatures and precipitation),
we have 12 mean monthly values which are representative of the actual climate. In
addition, CRU provides us with the mean altitude of each grid-point.

2.3 The statistical method: generalized additive models

Our goal is here to develop a statistical model capable of regressing the values of vari-
ables Y (temperature and precipitation), called predictands —i.e. values to be predicted
— taken from the CRU database. The predictors X; — i.e. the variables used to predict
Y — are values derived from CLIMBER outputs (see next Section). Based on our goal
of developing a non-linear method that is robust under evolving climate, the choice of
available approaches is reduced. The statistical approach retained is a Generalized
Additive Model (GAM, Hastie and Tibshirani, 1990). An advantage of this method is
that it allows visualizing the relationships between the predictands and the predictors
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through non-linear and non-parametrical functions. Indeed, GAM models the predic-
tands Y (i.e. CRU data) as a sum of spline functions (e.g. de Boor, 2001) f; applied to
different predictors X;:

p
j=1

This model corresponds to a non-linear regression between large and smaller scale.
Splines are piecewise parametrical or non-parametrical functions. That means that for
each piece, a function (of a given form) is estimated. For example, if the chosen form
is a second order polynomial function and that three intervals (i.e. pieces) are selected,
the associated spline function corresponds to three second order polynomial functions.
Consequently, a spline is a non-linear component of Y according to each predictor. In
this work, the chosen splines are piecewise third order polynomial functions.

The ¢ term of equation (1) is the model error that is supposed to be normally dis-
tributed with zero mean (Hastie and Tibshirani, 1990). Cumulated precipitation data
can generally be correctly modeled according to log-normal distributions. Hence, to be
in agreement with the statistical theory of GAM, in the following, for the precipitation
data, the Y variables will correspond to the log-values of the CRU precipitation inten-
sities. Temperature data, being generally Gaussian, will be provided to GAM without
transformation.

As an illustration of the ability of GAM to model linear and/or non-linear relationships
when needed, Fig. 1 shows the spline functionsf; estimated for a toy model calibrated
for July local precipitation data with four predictors being specific humidity (Q), wind
intensity in the v direction (Wv), the altitude (elv), and latitude (LAT). More details about
the data will be provided in Sect. 3.1. In this figure, the x-axes correspond to the
predictors data, and the y-axes to their contribution in the modelling of Y. This example
corresponds to p = 4 functions f; in relation (1). These four panels indicate that while
the contributions from Q and Wv are modeled through strong non-linearity, elv and LAT
contributions are mostly linear, and the LAT spline is clearly uninformative in this toy
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model for precipitation.

3 Applications and results
3.1 The predictor variables

In this article, because of their availability and supposed links to the variables to be
s downscaled, 15 predictors are chosen as potential informative candidates for explain-

ing Y:

— Nine “physical” variables:

specific (Q) and relative (RH) humidity,

sea level pressure (SLP),

10 temperature (T),

— wind intensity in u (Wu) and v (WVv) directions,

— dew point temperature(Td),

— dew point temperature depression DTd = Td - T,

DTd represents the degree of saturation in water vapor of the atmosphere. Td and DTd
15 have shown good capacities of prediction for downscaling of precipitation (Charles et
al., 1999; Vrac et al., 2007a, Vrac and Naveau, 2007),

— vertically integrated specific humidity (Ql).
— Six “geographical” variables:
— longitude (LON) and latitude (LAT),

20 — elevation (elv),
906
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— advective (Aco) and diffusive (Dco) continentality (see definition below),
— W-slope (Wsl) (see definition below).

The diffusive continentality index Dco (between 0 and 1) corresponds to the shortest
distance to the ocean. The closer a point to a sea or an ocean, the closer the index to
0. Conversely, the further a point from the sea, the closer the index to 1.

The advective continentality Aco (between 0 and 1) is associated to wind intensities
and directions at the point considered. It is based on the following hypothesis: an air
mass becomes progressively continental (or inversely maritime) as it travels over land
(ocean). The rate of this changes towards continental/maritime conditions is assumed
to be a constant fraction (7) per unit time, i.e. the change in continentality during a time
dtis:

dC =[-C(1 —igo) +(1-C)(ico)l T dt ()

with C the continentality (between O = sea limit and 1 = land limit), /., = O over sea,

1 over land and 7dt=1 %%dt:j’%u In(2), where dx is the distance traveled by the
0 0

air mass the time dt, U is the mean wind norm from CLIMBER and /,/U, is the dis-

tance/wind ratio corresponding to a continentality change of 2. This ratio is set to
Il _5.10°m
U™ s5mys °

To complete the computation of continentality at a given point, we must first integrate
the continentality change over each “incoming air mass path”:

In2)/U
IO/UO

It is necessary to decide the respective weight of each path direction. It is reasonable

to rely on simple assumptions: (1) give more weight to path directions which matches

the direction of the mean wind, and (2) give zero weight to paths which are in opposition

with the mean wind, i.e. penalizing an air-mass traveling against the wind (this would
907
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be inconsistent with our above assumptions for the continentality change over a given
path). A simple way to perform this is to use the scalar product of the mean wind U
and the path direction unit vector /, (integrated over each path):

ly = / max(/,.U , 0)dC (4)
path

The weighted average of the contributions from all paths provides the continentality at
the desired point:

214Cy
a
21y
7]

The last “geographical” variable is the W-slope taking into account (in part) the impact
of the mountains on the regional climate. It is computed separately from the continen-
tality indices but in a similar way. Like for continentality, several incoming air masses
directions are considered, with the same weighting as before, i.e. through (4). Here,
the W-slope corresponds to the mean zonal wind multiplied by the mean east-west
slope over approximately 100 km. Only upward trends are retained. That means that
the W-slope increases only when the air mass is going up.

Before fitting GAMs, our large-scale data have to be spatially interpolated to the CRU
spatial resolution to introduce some spatial variability in CLIMBER outputs. Indeed,
because we work on monthly data, no variability is present in the monthly CLIMBER
gridcell: for each month, for each available variable, we have only one CRU map and
one CLIMBER. This means that for the region associated to one CLIMBER gridcell,
we have several CRU gridcells (those contained in the CLIMBER gridcell) and thus
several CRU precipitation and temperature values but only one CLIMBER value. This
lack of variability does not allow us to apply GAM in favourable conditions. To get one
CLIMBER value for each CRU gridcell, the CLIMBER outputs have been bi-linearly
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interpolated to the CRU resolution. Hence, the interpolated CLIMBER outputs can be
used as predictors of the CRU precipitation and temperatures in GAM.

3.2 Pre-analysis: monthly GAMs

At least two different approaches are conceivable to develop our statistical model:
monthly GAMs — i.e. one model per month — or annual GAMs — i.e. one single model
calibrated for the data from the 12 months altogether. Although the monthly GAM ap-
proach can be used for local projections in a context of “light” climate change (from
a few years to a few decades), it is certainly less suitable for long terms (and hence
stronger) climate change. Indeed, potential changes and shifts in seasonality would
imply that monthly GAMs would be inappropriate and would provide unrealistic down-
scaled time series. That is why, in order to develop a valid statistical downscaling model
for past or future long terms under strong climate change, it has been decided to work
on annual GAMs. However, as a pre-analysis, to decide which variables are to be used
in the annual GAMSs, different models have been developed month by month.

First, for each single available predictor, a GAM is fitted in temperature and in pre-
cipitation for each month. Hence, for each month, we can compute the percentage of
variance explained by this predictor alone. Figures 2a and b present the results ob-
tained in precipitation and temperature respectively. These figures allow us to explain
some seasonal variability for the different variables. For example, while QI can account
for a good portion of the temperature variance (Fig. 2b) in the winter months, this vari-
able is less adequate in summer. For precipitation (Fig. 2a), on the opposite, the SLP
predictor describes more variance in summer than in winter months.

We can remark that the variables with the lowest percentages of variance explained
are the geographical predictors. However, by themselves, these figures alone are not
enough to decide which variables are to be kept. Indeed, they present results for GAMs
fitted separately for each predictor and do not bring information about GAM fitted to
combinations of predictors. To do this, 12 monthly GAMs (one for each month) have
been developed for temperatures and precipitation separately.
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In order to use the most explicative predictors, each combination of the 15 potential

p

predictors has been tested: if p variables are available, N= 3 C’; combinations are
k=1

to be tested, where ng(p_p—k!)!k!. With 15 variables, we have N=32 767 combinations

for each month. This can appear quite enormous but is actually reasonable in practice

since it only performed once. A few hours are enough to fit GAMs for all the combi-

nations. When the N combinations are tested, the “optimal” predictors are selected

according to the Bayesian Information Criterion (BIC, Schwartz, 1978):
BIC = ||Y - f(predictors)|’ + d log(n). (6)

This criterion combines a term corresponding to a goodness-of-fit measure of the
model to the data (the squared term) with a penalty term (last term) depending on
the size n of the sample and on the dimension d of the model. The BIC helps to select
a model (and therefore the predictors) associated to a good compromise between a
model explaining a large percentage of the variance (i.e. with a large number of pre-
dictors) and model of reasonable size.

Table 1 gives the percentage of (temperature and precipitation) variance explained
by the retained models for four months (January, April, July, and September) repre-
sentative of the four seasons. Not surprisingly, due to strong nonlinearities and large
spatial variability of the rainfall, the percentages of variance are higher for temperatures
(from 98.6% in July to 99.5% in September) than for precipitation (from 70% in April to
95% in July).

The number of selected predictors varies from month to month, with, generally, a
bigger number for temperatures (from 9 to 12 predictors) than for precipitation (from 5
to 7). Indeed, increasing the number of predictors (i.e. including more predictors) for
the precipitation certainly improves the goodness-of-fit to the data but not enough to
counterbalance the increase of the penalty term in the BIC.

Among the geographical variables, the altitude (elv) is an important one since it is
selected for every monthly model. The advective continentality (Aco) is also regularly
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chosen for precipitation and temperatures.

To understand the quality of the results brought by these monthly models, we can
look, for example, at Figs. 3g—h that present the boxplots of the predicted and observed
log-precipitation and temperatures for January (the results are relatively similar for each
month).

Boxplots are tools showing the statistical distribution of some sample. The low,
medium, and high lines forming the box represent the 25th, 50th, and 75th percentiles
(or first, median and third quartiles) respectively, indicating where the central 50% of
the data is located. Based on the interquartile range (IQR) calculated by subtracting
the first quartile from the third quartile), any data which lies more than 1.5*IQR lower
than the first quartile or 1.5xIQR higher than the third quartile is considered as an
outlier. The similarity between the predicted and observed statistical distributions in
Figs. 3g—h is visually obvious. We remark for precipitation that the very low and very
high values are slightly over- and under-predicted respectively. This is logical since, by
definition, the GAM approach is developed to model expectation more than extreme
behaviours.

Boxplots of the residuals for log-precipitation and temperatures (not shown) show
that the residuals (observations - predictions) are well centred around zero, with medi-
ans almost exactly at zero and the first and third quartiles very close to the medians.
The normal quantile-quantile plots (QQplots, not shown) — i.e. scatterplots of theoret-
ical (Gaussian) quantile vs. observed residuals quantiles, drawn to visually assess
the “Gaussianity” of the residuals — display residuals normally distributed for the cen-
tral values (approximately for quantiles between —2 and +2). Unsurprisingly, a normal
distribution is less suitable to characterize the highest and smallest residuals.

In Figs. 3a—c, we compare the observed 3a and predicted 3b precipitation maps and
see the map of the residuals 3c for January while Figs. 3d—f display the equivalent maps
for temperatures. The map shown in Fig. 3a is obtained by exponentially transforming
the log-precipitation predicted by the January GAM model. On both Figs. 3c and f,
we can remark some kind of structure for the residuals. For example, a region with
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negative residuals (i.e. pred > obs) is common at the two variables over the Pyrenees.
This is true for any month. In general, the agreements between Figs. 3a and b and
between 3d and 3e are clear. The maps and boxplots in Fig. 3 show the high-quality
results brought by the monthly GAM approach.

In the following, GAM is not developed month by month but through an annual ap-
proach.

3.3 Application: annual GAM to long term downscaling projections

In order to develop our annual GAMs, two types of predictors are first used separately:
the physical and the geographical variables. Based on the results obtained from the
monthly GAMs in the previous subsection, some variables are disregarded because
they were (almost) never retained as predictors or not very informative. For example,
although LON is a frequently selected predictor, this variable has not been kept in
the following. Indeed, a model based on LON would stay too close from the present
climate. No realistic long term downscaling projections could be made based on this
variable. Moreover, the splines obtained for LON were generally very flat and close to
0. This means that although LON participated to improve the percentage of variance
explained in a present climate, its global contributions were generally relatively small,
of the order of the penalty term, and hence LON was not essential to be kept, even in
short term future. The same remark holds for Wu for the temperature GAM. Thus, this
variable is not retained in the following application.
Hence, the physical predictors retained for the annual GAMs are:

- Q, RH, T, Wu, Wy, Td, DTd, and QI for the precipitation model and
- Q, RH, SLP, T, Wy, Td, DTd, and QI for the temperature one.

These predictors, when combined altogether, are supposed to have the highest per-
centage of variance explained (among the physical variables) for the whole year. The
geographical variables retained are the same for the precipitation and temperature
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annual GAMs and are: the altitude (elv), the advective continentality (Aco) and the
W-slope (Wsl).

First, the (precipitation and temperatures) physically-based and geographically
based annual GAMs are calibrated. The geographical predictors explain 17.5% and
79% of variance for log-precipitation and temperatures respectively, while the physical
ones explain 60% and 91% of variance for log-precipitation and temperatures respec-
tively.

Figures 4 and 5 show the associated residuals (obs-predicted) for the four months
(January, April, July, and October), respectively for the log-precipitation with geographi-
cal predictors (Figs. 4a—d) and with physical predictors (Figs. 4e—h), and for the temper-
atures with geographical predictors (Figs. 5a—d) and with physical predictors (Figs. 5e—
h).

Although with a relatively low percentage of variance explained (17.5%), the log-
precipitation residuals maps obtained from the geographical variables are actually quite
acceptable. This low percentage of variance comes from some relatively small er-
rors distributed over the year and by stronger residuals (meaning stronger errors) in
Southern Europe in July and August. Precipitation predictions (Fig. 4) seem to be
slightly better with physical variables than with geographical ones, overall for summer
months. This is true also for temperatures (Fig. 5): despite systematic errors of about
5°C over high mountains, physical variables look more efficient to provide local predic-
tions whose the residuals are close to 0.

However, these differences between physically- and geographically-based predic-
tions are slight and are not informative about the behaviour of the predictions in the
context of a different climate.

In order to test the annual models for climate different from the one used for cali-
bration, we downscale the large-scale CLIMBER data over two regions corresponding
approximately to North America (USA and Canada) and Northern Europe (with a part
of Siberia). The North America results of residuals (obs — pred) are presented for (log)
precipitation in Figs. 6a—d and in Figs. 6e—h for temperatures, from the geographical
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predictors. The results from the physical predictors and Northern Europe results are
not shown here but are discussed in the following.

North America precipitation residuals maps from the geographical variables
(Figs. 6a—d) show coherent spatial structures, despite more or less pronounced resid-
uals (from —6 to +2 units). The equivalent maps from the physical predictors (not
shown) are associated to larger residuals (comprised between —30 and —15 units) and
to very unrealistic structures. The latter can be explained by the values of the physical
predictors that are out of the calibration range observed over Western Europe. More-
over, in Figs. 6a—d, the downscaled precipitation is associated to larger errors inland
than along the East and West American coasts: the continentality index seems to play
a non-negligible role. Furthermore, we can remark that the residuals are weaker for
summer than for winter months.

The same conclusions hold for the precipitation projections over the Northern Europe
region (not shown): residuals maps with unrealistic structures from physical predictors
(out of the calibration range) and with coherent spatial structures from geographical
variables; weaker residuals with geographical (-5 to +2 units) than physical variables
(—30 to —10 units); the geographical predictors provide smaller errors inland than along
the coasts; weaker in summer then in winter.

Figures 6e—h for the North America temperature residuals maps show similar re-
sults than previously despite some differences. The similarities are obvious: unrealistic
maps from physical predictors (not shown) with high residuals (+120°C to +220°C) and
continuous aspect maps from the geographical variables with lower residuals (-30°C
to +10°C), as previously, smaller in summer. The inland/coasts differences visible for
precipitation are not present for temperatures. The differences are more pronounced
according to the latitudes: for example, in January, north is associated to large resid-
uals, and the more we go south, the smaller the errors. The Northern Europe tem-
perature results (not shown) are equivalent except for the latitudes-driven residuals.
Indeed, while residuals seem to be latitudes-driven in summer, the residuals structures
are longitudinal in winter (with relatively small values).
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In general, we see that the geographical predictors are more “robust” than phys-
ical variables in downscaling precipitation and temperature values under large-scale
climate conditions strongly different from the calibration ones.

Based on these results, annual GAMs are fitted to present climate Western Europe
temperatures and precipitation, and used to deduce last glacial maximum (LGM, 21ky)
temperatures and precipitation. For this LGM downscaling, the retained predictors
are the geographical variables (elv, Aco, and Wsl), where one physical predictor is
added, chosen from the previous plots and analyses. For precipitation, this variable
is the CLIMBER sea level pressure (SLP), while for temperatures it is the CLIMBER
temperature (T). Indeed, although the geographical predictors bring robustness to the
downscaling process, they are not sufficient by themselves to drive correctly the local
variables. The selected added variables are supposed to provide useful large-scale
information in order to have more physically-driven temperatures and precipitation. As
the LGM sea level is 120 m lower than today, the LGM elv predictor is taken as the
present altitude plus 120 meters. Note that the ice sheets supposed to cover northern
Europe are not modelled in this work.

The monthly precipitation maps of the relative differences with respect to present
precipitation are presented in Figs. 7a—d and the monthly temperature maps of the
absolute differences with respect to present temperatures are presented in Figs. 7e—h,
for January, April, July, and October.

Figures 7a—d show that, in general, LGM climate is drier that present one. However,
regionally, some increases of the precipitation are to be noted. Moreover, the North-
East part of the studied region presents a clear increase, whatever the month.

For temperatures in Figs. 7e—h, as expected, we see that the LGM climate is colder
that present, whatever the month and the region. A latitudinal effect is discernible for
about November-May (not shown completely, see January), with stronger differences
in Northern regions and smaller ones in South. LGM June—October show more uniform
differences with respect to present with somehow a “coastal’ effect, see for example
July.
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In order to have more assessment of the LGM results brought by our CLIMBER-
driven GAM, reconstructed LGM precipitation and temperature data have been com-
pared to our downscaled values. These data are local reconstructions from pollen data
using inverse vegetation modeling (Wu et al., 2007). The locations of the 10 points
in Western Europe are shown on Fig. 8. Moreover, four GCMs involved in the Pa-
leoclimate Modelling Intercomparison Project Il (PMIP2, e.g. Kageyama et al., 2006;
Ramstein et al., 2007) are also used: MIROC3.2.2, FGOALS-1.0g, IPSL-CM4-V1-MR,
and HadCM3M2. These fully coupled atmosphere-ocean GCM experiments are avail-
able in the PMIP2 database as of 7 April 2007 ( ). Hence, for
each of the 10 locations, we have:

1. the LGM reconstructed temperature and precipitation values (min, median, and
max)

2. the temperature and precipitation values for the CLIMBER grid-cells containing
the points,

3. the projections obtained from the CLIMBER-driven GAM,

4. the four (temp. and precipitation) GCMs values for the model grid-cells containing
the points.

For each of these 10 locations, we compare these different values for LGM January
and July in Figs. 9a—b for temperature and in Figs. 9c—d for precipitation. Note that the
CLIMBER precipitation simulations are not used in GAM for downscaling and are only
provided here for comparisons.

Although the goal of this paper is not to assess the CLIMBER simulations, the most
surprising result may be the good agreement between CLIMBER and the local recon-
structions. For both temperature and precipitation, the GAM downscaled values are
realistic and generally brought some useful additional information. Indeed, even when
CLIMBER is far away from the values to be retrieved/approximated, the downscaling
process is sometimes capable of moving away from CLIMBER and getting closer to
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the reconstructions. For example, for July precipitation (Fig. 9d), in station 10 (the right
one), CLIMBER precipitation is clearly to large and the downscaled value is brought
back to the low part of the GCMs range, closer to the reconstructed precipitation. A
counterexample is given by stations 8 and 9 (in the same Fig. 9d), where CLIMBER
precipitation is too high and the downscaled value is higher. This result is not surpris-
ing since these stations are the two locations over Italy where we see, in Fig. 7c, an
unrealistic increase of precipitation larger than 100%.

For temperatures, the results are generally better for January than for July. The
PMIP2 GCMs used in this work give ranges of temperatures quite far from the re-
constructions. Hence, as the CLIMBER temperatures are close to the GCMs range,
although the CLIMBER-driven GAM downscaled temperatures are capable of moving
away from the CLIMBER values, the downscaled temperatures tend to stay distant
from “real” values.

As a summary of these results, Table 2 presents the mean temperatures (in °C) and
mean precipitation (in mm/month) computed for January and July from the 10 stations
and without stations 8 and 9 from the reconstructed data, the GCMs and the GAM
projections. We see that in general the mean GAM downscaled values are closer to
the reconstructions than the PMIP2 GCMs. However, due to stations 8 and 9 with too
large downscaled precipitation, for the July mean precipitation, the GCMs are closer
than the downscaled data. By removing these two stations for the mean computation,
the GAM approach gives us a mean value close to the one from the reconstructions.

In general, the CLIMBER-driven GAM based downscaling process provides satis-
fying local temperatures and precipitation, thus showing the quality of the proposed
method.

4 Conclusions and discussion

In this article, we developed a statistical downscaling method allowing a non-linear
modeling of the relationships between large and small scales. In this context of down-
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scaling — indispensable in any impacts studies and often required in paleoclimate re-
searches — the Generalized Additive Model (GAM) developed here represents an orig-
inal approach.

Monthly GAMs (i.e. calibration month by month) can be used in a framework of
slightly changed climate conditions, for short terms local projections (from a few years
to some decades). However, in a (past or future) long terms climate change framework,
annual GAMs (i.e. calibration for the 12 months altogether) are preferable. Indeed, they
allow avoiding potential errors due to climate change associated to seasonal shifts and
changes that would prevent us from using monthly models.

The GAM calibrations for temperatures and precipitation according to two types of
predictors (physical and geographical predictors), as well as the CLIMBER-driven local
projections for different regions of the world (Western Europe, North America, North-
ern Europe) have shown that the geographical predictors provide robustness to the
downscaling process. While the physical variables alone seem to be unusable for
projections when the predictors are out of the calibration range, the physical ones are
steadier and bring some stability and robustness to the downscaling projections. These
results show, for a part, the limitation of any statistical downscaling method when the
predictors (GCM outputs) used for projections come out of the domain on which the
model has been calibrated. Hence, physical predictors have to be chosen carefully,
and to be associated with geographical variables for realistic projections.

Based on the geographical predictors (altitude, advective continentality, and W-
slope) associated with physical one selected with care (CLIMBER Temp for temper-
atures and CLIMBER SLP for precipitation), annual GAMs have been calibrated on
present climate and used for local projections at the LGM. Although we have some
regional increase, the resulting maps showed realistic decreases in temperature and
precipitation with respect to present climate, at least over France, i.e. the central part
of the Western Europe region. When compared to reconstructed temperature and pre-
cipitation values and simulations from four GCMs involved in PMIP2, the downscaled
values behave well, showing that CLIMBER-driven GAMs are an efficient approach to
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provide plausible LGM projections of local temperatures and precipitation.

As a perspective, it would be interesting to use the couple CLIMBER/GAM approach
to generate long time series (e.g. thousand years or more) of local variables such as
temperatures and precipitation. The produced data would be useful to understand
the past climate evolution and could be compared to time series reconstructed from
proxies.

It would also be worth calibrating and applying the GAM approach to the GCMs
involved in PMIP2 instead of the CLIMBER model. Based on their resolution higher
than the CLIMBER resolution, we can expect more precise results. Moreover, we
would dispose of a large set of downscaled values, expressing the local variability of
the projections and opening ways for more comparisons and research.
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Table 1. Percentages of (temperature and precipitation) variance explained by the retained
models for four months (January, April, July, and September) representative of the four seasons.

Months % of temperature
variance explained

% of precipitation
variance explained

JANUARY 99%

APRIL 99.3%
JULY 98.6%
SEPTEMBER 99.5%

79%
70%
95%
85.3%
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Table 2. Mean temperatures (in °C) and precipitation (in mm/month) computed for January and
July from the 10 stations and without stations 8 and 9.
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From the 10 without stations
stations 8and9
January mean temperatures ~ from reconstructions -8.7 -9.3
from GCMs -0.3 -0.3
from GAM -3 -3.4
July mean temperatures from reconstructions -2.5 -3.2
from GCMs 14.2 13
from GAM 10.6 9.9
January mean precipitation from reconstructions 61.4 59.6
from GCMs 85.7 91.2
from GAM 54.4 62.1
July mean precipitation from reconstructions 35.3 40.1
from GCMs 39.7 459
from GAM 49.2 43.4
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Fig. 1. Spline functions estimated for a toy model calibrated for the July CRU precipitation
data with predictors Q, Wy, elv, and LAT. While the contributions from Q and Wv are modeled
through strong non-linearity, elv and LAT contributions are mostly linear, and the LAT spline is
clearly uninformative in this toy model.

925

3, 899-933, 2007

Non-linear statistical
downscaling over
Europe

M. Vrac et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion


http://www.clim-past-discuss.net
http://www.clim-past-discuss.net/3/899/2007/cpd-3-899-2007-print.pdf
http://www.clim-past-discuss.net/3/899/2007/cpd-3-899-2007-discussion.html
http://www.egu.eu

% of precipitation variance explained

Title Page

Abstract Introduction

Conclusions References

Tables Figures

% of temperature variance explainad

Back Close

Full Screen / Esc

(b) Percentage of temperature variance

Printer-friendly Version
Fig. 2. Percentage of (a) precipitation and (b) temperature variance explained for each month
by each predictor separately. Interactive Discussion
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Fig. 3. January maps of (a) exponential of GAM predicted precipitation, (b) observed pre-
cipitation, (c) precipitation residuals (i.e. b-a), (d) GAM predicted temperatures, (e) observed Printer-friendly Version
temperatures, and (f) temperature residuals (i.e. d—e); and associated boxplots of the predicted
and observed (g) log-precipitation and (h) temperatures (the results are relatively similar for ev-
ery month). Predictions were obtained from the monthly January (temperature or precipitation)

GAMs. EGU
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Fig. 4. Log-precipitation GAM residuals (obs-pred) maps for Western Europe, (a—d) from the PN R e
geographical predictors, (e—h) from the physical predictors, for January, April, July, and October Interactive Discussion
respectively. Predictions were obtained from annual (i.e. 12 months together) Western Europe

log-precipitation GAMs.
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Fig. 5. Temperature GAM residuals (obs-pred) maps for Western Europe, (a—d) from the ge-
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respectively. Predictions were obtained from annual (i.e. 12 months together) Western Europe
temperature GAMs.
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Fig. 6. (a—d) Log-precipitation and (e—h) temperature GAM residuals (obs-pred) maps for North
America, from the geographical predictors, for January, April, July, and October respectively.
Predictions were obtained from annual Westeé'gcl)zurope GAMs.
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Fig. 7. Monthly maps of (a—d) relative differences and (e—h) absolute differences (with re-
spect to present) between GAM downscaled LGM values (from geographical predictors and
CLIMBER SLP for precipitation and from geographical predictors and CLIMBER T for temper-
atures) and present (a—d) precipitation and (e—h) temperatures for January, April, July, and
October respectively. Predictions were obtained from annual Western Europe GAMs.
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Fig. 8. Locations of the 10 reconstructed LGM data in Western Europe whose the values have
to be compared to our GAM downscaled values.
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Fig. 9. (a—b) Comparison at the 10 locations of the reconstructed temperatures (min, median,
and max in o signs), the min, median, and max temperature values (in asterisk signs) from the
four GCMs grid-cell (containing the location), the CLIMBER grid-cell (containing the location)
temperatures (in diamond signs), and the CLIMBER-driven GAM downscaled temperatures (in
x signs); (a) in January, (b) in July; (c—d) idem for precipitation values.
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